Menu

Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, USA

1024 681 Stroud Water Research Center

Burchsted, D., and M.D. Daniels. 2014. Geomorphology 205:36–50.

doi: 10.1016/j.geomorph.2012.12.029

Abstract

Of the many types of barriers to water flow, beaver dams are among the smallest, typically lasting less than a decade and rarely exceeding 1.5 m in height. They are also among the most frequent and common obstructions in rivers, with a density often exceeding ten dams per km, a frequency of construction within a given network on a time scale of years, and a historic extent covering most of North America. Past quantification of the geomorphologic impact of beaver dams has primarily been limited to local impacts within individual impoundments and is of limited geographic scope. To assess the impact of beaver dams at larger scales, this study examines channel shape and sediment distribution in thirty river reaches in northeastern Connecticut, U.S.A. The study reaches fall within the broader categories of impounded and free-flowing segments, leaving a third segment class of beaver meadows requiring additional study. Each of the study reaches were classified at the reach scale as free-flowing, valley-wide beaver pond, in-channel beaver pond, and downstream of beaver dam. The bankfull channel width to depth ratios and channel widths normalized by watershed area vary significantly across the study reach classes. Additionally, reaches modified by beaver dams have finer sediment distributions. This paper provides the first quantitative geomorphic descriptions of the in-channel beaver pond and reaches downstream of beaver dams. Given the different channel shapes and sediment distributions, we infer that geomorphic processes are longitudinally decoupled by these frequent barriers that control local base level. These barriers generate heterogeneity within a river network by greatly increasing the range of channel morphology and by generating patches controlled by different processes. Therefore, in spite of the small size of individual beaver dams, the cumulative effect of multiple dams has the potential to modify processes at larger spatial scales. To improve assessment of the larger-scale impacts, we propose a hierarchical classification scheme based on discontinuities, place the reach classes of this study within that scheme, and suggest that further research should continue investigation of discontinuity at the network scale and quantification of the cumulative impacts.