Influence of riparian and watershed alterations on sandbars in a Great Plains river

1024 681 Stroud Water Research Center

Fischer, J., C. Paukert, and M.D. Daniels. 2014. River Research and Applications 31(9):1140–1150.

doi: 10.1002/rra.2811


Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.