Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers

350 210 Stroud Water Research Center

Raymond, P.A., C.J. Zappa, D. Butman, T.L. Bott, C. Potter, P. Mulholland, A.E. Laursen, W.H. McDowell, and D. Newbold. 2012. Limnology and Oceanography: Fluids and Environments 2:41–53.

doi: 10.1215/21573689-1597669


Scaling is an integral component of ecology and earth science. To date, the ability to determine the importance of air–water gas exchange across large spatial scales is hampered partly by our ability to scale the gas transfer velocity and stream hydraulics. Here we report on a metadata analysis of 563 direct gas tracer release experiments that examines scaling laws for the gas transfer velocity. We found that the gas transfer velocity scales with the product of stream slope and velocity, which is in alignment with theory on stream energy dissipation. In addition to providing equations that predict the gas transfer velocity based on stream hydraulics, we used our hydraulic data set to report a new set of hydraulic exponents and coefficients that allow the prediction of stream width, depth, and velocity based on discharge. Finally, we report a new table of gas Schmidt number dependencies to allow researchers to estimate a gas transfer velocity using our equation for many gasses of interest.

Give the Gift of Fresh Water

As you give thanks for the gifts in your life, we invite you to give the gift of water. Clean drinking water, good health, happy trout, productive soil, clean air, the simple joys of swimming, boating, fishing — our healthy freshwater ecosystems make these and so many other things possible.

Your donation today will help preserve and protect
the future of fresh water.