Menu
:
:



Ecotoxicological response of marine organisms to inorganic and organic sediment amendments in laboratory exposure

350 210 Stroud Water Research Center

Rosen, G., J. Leather, J. Kan, and Y.M. Arias-Thode. 2011. Ecotoxicology and Environmental Safety 74:1921–1930.

doi: 10.1016/j.ecoenv.2011.06.023

Abstract

Experimental materials currently being investigated for use as amendments for the in situ remediation of contaminated sediments were assessed for their potential impacts on marine benthos. Laboratory toxicity tests involving lethal and sublethal endpoints were conducted on sediments amended with apatite, organoclay, chitin, or acetate, with the polychaete Neanthes arenaceodentata, the amphipod Eohaustorius estuarius, and the larval sheepshead minnow Cyprinodon variegatus. Amendments were mixed loosely into uncontaminated or metal-contaminated sediments, and also added inside experimental geotextile mats, at sediment dry weight (dw) concentrations ranging from 0.5% to 10%. The geotextile mats, containing apatite (5 or 10% dw), and/or organoclay (5%) did not result in adverse effects on any of the test organisms. Chitin and acetate, however, repetitively resulted in adverse effects on survival and/or adverse or positive effects on organism growth at concentrations of ≤2.5% dw. The adverse effects were attributed to water quality degradation in the exposure vessels (notably ammonia and dissolved oxygen concentration, for chitin and acetate, respectively) as a result of the microbial breakdown of the amendments. For N. arenaceodentata, growth was enhanced in the presence of chitin at concentrations as low as 0.5% sediment dw, which stimulated bacterial growth that may have provided an additional food source for the polychaete. Sediment chitin concentrations of 0.5% resulted in a statistically significant reduction in N. arenaceodentata body burdens of 61%, 29%, and 54%, relative to unamended contaminated sediment, for Cu, Zn, and Cd, respectively. The studies suggest a lack of inherent toxicity of these materials on the experimental organisms, as the adverse or positive responses observed are likely related to artifacts associated with laboratory exposure. Assessments in field settings are needed to verify this conclusion.

Give the Gift of Fresh Water

As you give thanks for the gifts in your life, we invite you to give the gift of water. Clean drinking water, good health, happy trout, productive soil, clean air, the simple joys of swimming, boating, fishing — our healthy freshwater ecosystems make these and so many other things possible.

Your donation today will help preserve and protect
the future of fresh water.