Menu

Ecosystem metabolism in streams of the Catskill Mountains (Delaware and Hudson River watersheds) and Lower Hudson Valley

350 210 Stroud Water Research Center

Bott, T.L., D.S. Montgomery, J.D. Newbold, D.B. Arscott, C.L. Dow, A.K. Aufdenkampe, J.K. Jackson, and L.A. Kaplan. 2006. Journal of the North American Benthological Society 25(4):1018–1044.

doi:10.1899/0887-3593(2006)025[1018:EMISOT]2.0.CO;2

Abstract

Ecosystem metabolism was measured in 10 streams flowing into New York City drinking-water-supply reservoirs. Six of the streams were located west of Hudson River (WOH) in the Catskill Mountains and 4 were in the Croton River watershed east of Hudson River (EOH). Measurements were made for 3-d periods between June and November in each of 3 y using an open-system O2 technique with reaeration determined from propane evasion. Chlorophyll a concentrations, algal cover types, and nutrient uptake were measured concurrently. Gross primary productivity ranged from 2.02 to 4.32 g O2 m−2 d−1 in the WOH streams and from 0.23 to 1.13 g O2 m−2 d−1 in the EOH streams. Community respiration ranged from 3.94 to 8.30 g O2 m−2 d−1 in the WOH streams and from 1.39 to 6.12 g O2 m−2 d−1 in the EOH streams. All streams were heterotrophic. The WOH streams were larger and more open than the EOH streams. Metabolism was strongly correlated with instream environmental and water-chemistry variables and riparian shade. Land use was largely forested with some agriculture in the WOH watersheds, and it was forested or urbanized in EOH watersheds. Landuse impacts were confounded by the smaller size and denser shade along EOH streams than along WOH streams.

  • 0

Join the Clean Water Paddle Push!

When: August 1–16
Where: A body of water near you!

Grab your paddleboard, canoe, kayak, or inner tube and hit a body of water near you during our two-week celebration of water, the earth’s most vital natural resource.

Get all the details